skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Chenyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract—Multi-Object Tracking (MOT) is a critical task in computer vision, with applications ranging from surveillance systems to autonomous driving. However, threats to MOT algorithms have yet been widely studied. In particular, incorrect association between the tracked objects and their assigned IDs can lead to severe consequences, such as wrong trajectory predictions. Previous attacks against MOT either focused on hijacking the trackers of individual objects, or manipulating the tracker IDs in MOT by attacking the integrated object detection (OD) module in the digital domain, which are model-specific, non-robust, and only able to affect specific samples in offline datasets. In this paper, we present ADVTRAJ, the first online and physical ID-manipulation attack against tracking-by-detection MOT, in which an attacker uses adversarial trajectories to transfer its ID to a targeted object to confuse the tracking system, without attacking OD. Our simulation results in CARLA show that ADVTRAJ can fool ID assignments with 100% success rate in various scenarios for white-box attacks against SORT, which also have high attack transferability (up to 93% attack success rate) against state-of-the-art (SOTA) MOT algorithms due to their common design principles. We characterize the patterns of trajectories generated by ADVTRAJ and propose two universal adversarial maneuvers that can be performed by a human walker/driver in daily scenarios. Our work reveals under-explored weaknesses in the object association phase of SOTA MOT systems, and provides insights into enhancing the robustness of such systems 
    more » « less
    Free, publicly-accessible full text available December 8, 2025